
Rhadamanthys & the 40 thieves

The nuts, bolts and lineage of the multimodular

stealer

What’s this talk about

• Rhadamanthys stealer
• a complex malware that

appeared in 2022

• containing a large set of

modules

• interesting internal design

Contents

1. Quick Hands On Rhadamanthys:

• Its earlier history & weirder features

•Analyzing its stealers directly from a broken

memdump

2. Untangling the complexity:

• the logic behind the Rhadamanthys design

• all the flavors of Rhadamanthys modules (native
modules, LUA runner, plugins, and more)

Who are we?

• Aleksandra „Hasherezade” Doniec
• https://hasherezade.net

• Ben Herzog

• @bh11235@infosec.exchange

https://hasherezade.net

Earlier History & Weirder

Features

Setting the Stage

Director of First Impressions

Initial Victomology & Success

Drive-by Danger

F U N C T I O N A L I T Y

Peak Targeting (1)

Peak Targeting (2)

Endless Productivity

From broken memdump to direct

RE of infostealing

Fundamentals of RE

Expectation vs Reality

The other school of RE

The Goal in Sight

Strings?...

Aye, There's the Rub

So close, yet…

A Desperate Effort

Kludging a Copy of the DLL

Now for the Hard Part

Guess the DLL?..

Delta Hunting

Delta Hunting - Script

Delta Hunting - Results

Readable DB

Untangling the complexity
The logic behind the Rhadamanthys design

Untangling the complexity

Untangling the complexity

Untangling the complexity

• Rhadamanthys consists of modules

• The core malicious modules will be downloaded
only after the environment was checked

• Only the first component is a PE: all the vital
functionality is implemented in form of

“shellcodes”

Untangling the complexity

• Rhadamanthys consists of modules

• It is organized in the way that the real
malicious modules will be downloaded only after
the environment is checked

• Only the first component is a PE: all the vital
functionality is implemented in form of
shellcodes – well, not really. It uses custom
formats, with a structure analogous to PE, yet
completely reworked by the author to not
resemble it

The custom formats

• It is a form of obfuscation, which:
• Is meant to mislead tools used for automated dumping
(no artifacts that resemble PE can be found in

memory – only code)

• Makes the life of the analyst harder: unpacking and
understanding of the important components require

some reconstructive work

• Components cannot be parsed by typical analysis
tools

The staged loader

• The first component is a standard PE (exe)

Only the first
module is a PE

The staged loader

• The exe carries configuration and a package

containing other modules

The configuration
including the C2

address

A package with
multiple other

modules

The staged loader

• The bootstrap shellcode is loaded

In the version 0.5.0 the shellcode
loaded from the package is filled

into .textbss section. In other
versions it may be loaded into a

private memory

The staged loader

• The shellcode loads the next component (Stage
2)

The component
in a custom

format

The staged loader

• The custom module continues with the loading

The component
in a custom

format -
another part of

loding chain

The staged loader

• Stage 2 loads other components from the package

The next loader
uses the

configuration,
and the passed

package

Loads more
components

from the
package

The staged loader

• The modules check the environment against
monitoring tools

the custom
modules

responsible for
environment

checks

The staged loader

• The next module is run only if the environment
is clean

netclient:
downloading

and decrypting
the next stage

The staged loader

• The C2 should respond with a media file,
carrying the payload

The C2 is
queried after all

the
environment

checks passed

The URL is
retrieved

The staged loader

• The media file: WAV or JPG

Two options
available: JPG

or WAV

Contains encrypted
package

Earlier version
of RH used the
following JPG

The staged loader

• There is still a bit more complexity…

Runs under the cover of one
of the following :

● credwiz.exe
● OOBE-Maintenance.exe
● openwith.exe
● dllhost.exe
● rundll32.exe

The final stage: components

Module path Type Role

/bin/i386/coredll.bin

/bin/amd64/coredll.bin
XS2 Main stealer module

/bin/i386/stubmod.bin

/bin/amd64/stubmod.bin
XS2

Prepares a .NET environment inside the

process, to load other .NET modules

/bin/i386/taskcore.bin

/bin/amd64/taskcore.bin
XS2

Manages additional modules for the tasks

supplied by the C2

/bin/i386/stubexec.bin

/bin/amd64/stubexec.bin
XS2

Injects into regsvr32.exe, and remaps the

module into a new process

/bin/KeePassHax.dll PE (.NET) Steals KeePass credentials

/bin/runtime.dll PE (.NET)
Runs PowerShell scripts and plugins in the form

of .NET assemblies

/bin/loader.dll PE (.NET) General purpose .NET assemblies runner

Package #2
carries the

components for
the final stage

The XS format

• Since version 0.4.5 Rhadamanthys uses a custom
format with XS magic(two variants, XS1 and XS2)

struct xs1_format

{

_WORD magic;

_WORD nt_magic;

_WORD sections_count;

_WORD imp_key;

_WORD header_size;

_WORD unk_3;

_DWORD module_size;

_DWORD entry_point;

xs1_data_dir imports;

xs1_data_dir exceptions;

xs1_data_dir relocs;

xs_section sections[SECTIONS_COUNT];

};

The XS format

• How it differs from the PE?

Custom, unfamiliar
header

Atypical sections
layout

Customized data
directories:
relocations,
imports, etc

Obfuscated imports

The XS format

• We were able to create a tool that can convert
an XS component, dumped from memory, into a PE

Reconstructed PE
header

Normalized
sections layout

Converted data
directories:
relocations,
imports, etc

Deobfuscated,
easily parsable

imports
Converter:
https://github.com/hasherezade/hidden_bee_tools/

tree/master/bee_lvl2_converter

https://github.com/hasherezade/hidden_bee_tools/tree/master/bee_lvl2_converter
https://github.com/hasherezade/hidden_bee_tools/tree/master/bee_lvl2_converter

The XS format

• The XS header is a minimalist rework of PE
header

Deobfuscated, easily parsable imports

struct xs1_format

{

_WORD magic;

_WORD nt_magic;

_WORD sections_count;

_WORD imp_key;

_WORD header_size;

_WORD unk_3;

_DWORD module_size;

_DWORD entry_point;

xs1_data_dir imports;

xs1_data_dir exceptions;

xs1_data_dir relocs;

xs_section sections[SECTIONS_COUNT];

};

new field: XOR
key for

deobfuscation
PE fieldsPE fieldsPE fields

The XS header obfuscation

• After the loading completed, the header is
overwritten with random bytes

Before After

The XS format - sections

• Not all sections that are in the raw format are
to be loaded. It is determined by a flag if the

section is to be loaded or not.

Section #1

Section #2

PAGE_NOACCESS

Section #3

PAGE_NOACCESS

Inaccessible pages
between sections make
dumping contiguous
memory harder

The XS format

• Only 3 data directories
Deobfuscated, easily parsable imports

struct xs1_format

{

_WORD magic;

_WORD nt_magic;

_WORD sections_count;

_WORD imp_key;

_WORD header_size;

_WORD unk_3;

_DWORD module_size;

_DWORD entry_point;

xs1_data_dir imports;

xs1_data_dir exceptions;

xs1_data_dir relocs;

xs_section sections[SECTIONS_COUNT];

};

The XS format - relocations

struct xs_relocs

{

DWORD count;

xs_relocs_block blocks[1];

};

struct xs_relocs_block

{

DWORD page_rva;

DWORD entries_count;

};

struct xs_relocs_block

{

DWORD page_rva;

DWORD entries_count;

};

struct xs_relocs_block

{

DWORD page_rva;

DWORD entries_count;

};

struct xs_reloc_entry {

BYTE field1_hi;

BYTE mid;

BYTE field2_low;

};

after the list of reloc blocks, there are entries
in the following format:

Relocations are stores as
pairs, condensed into 3
bytes:
• 1st byte, 1st nibble

from the 2nd byte
• 2nd nibble from the

2nd byte, and 3rd byte

0x184 ; 0x188

The XS format - imports

struct xs1_import

{

_DWORD dll_name_rva;

_DWORD first_thunk;

_DWORD original_first_thunk;

_BYTE obf_dll_len[4];

};

struct xs1_format

{

_WORD magic;

_WORD nt_magic;

_WORD sections_count;

_WORD imp_key;

_WORD header_size;

_WORD unk_3;

_DWORD module_size;

_DWORD entry_point;

xs1_data_dir imports;

xs1_data_dir exceptions;

xs1_data_dir relocs;

xs_section sections[SECTIONS_COUNT];

};
The functions are resolved
by checksums, that are
stored in place of thunks

The DLL names are
obfuscated with the XOR-
based algorithm, using the
key from XS header

The key from the main
header is used to
deobfuscate the DLL, and
also in checksum
calculation

The XS format- exceptions

Registering the exception
handlers in Rhadamanthys (64-
bit)

The XS format- exceptions

set additional flag:
ImageDispatchEnable
(make the custom module to be
treated as MEM_IMAGE)

The lineage of the custom

formats

Malware Format Customized
PE header?

Customized
imports?

Customized
relocations?

Customized
exception
handling?

RH >= 0.4.5 XS

RH < 0.4.5 HS partial

RH < 0.4.5 RS

The lineage of the custom

formats

Malware Format Customized
PE header?

Customized
imports?

Customized
relocations?

Customized
exception
handling?

RH >= 0.4.5 XS

RH < 0.4.5 HS partial

RH < 0.4.5 RS

Identical implementation of
custom exception handling
can be found in HiddenBee

The Hidden Bee miner

diagram of the stages - source:
https://www.trendmicro.com/en_us/research/18/g/new-
underminer-exploit-kit-delivers-bootkit-and-
cryptocurrency-mining-malware-with-encrypted-tcp-
tunnel.html

Diagram of the header of “BABECAFE” filesystem (based on
ROM FS), containing a module in a custom NS format.
Source:
https://www.malwarebytes.com/blog/news/2019/05/hidd
en-bee-lets-go-down-the-rabbit-hole

The “NS” custom executable

https://www.trendmicro.com/en_us/research/18/g/new-underminer-exploit-kit-delivers-bootkit-and-cryptocurrency-mining-malware-with-encrypted-tcp-tunnel.html
https://www.trendmicro.com/en_us/research/18/g/new-underminer-exploit-kit-delivers-bootkit-and-cryptocurrency-mining-malware-with-encrypted-tcp-tunnel.html
https://www.trendmicro.com/en_us/research/18/g/new-underminer-exploit-kit-delivers-bootkit-and-cryptocurrency-mining-malware-with-encrypted-tcp-tunnel.html
https://www.trendmicro.com/en_us/research/18/g/new-underminer-exploit-kit-delivers-bootkit-and-cryptocurrency-mining-malware-with-encrypted-tcp-tunnel.html
https://www.malwarebytes.com/blog/news/2019/05/hidden-bee-lets-go-down-the-rabbit-hole
https://www.malwarebytes.com/blog/news/2019/05/hidden-bee-lets-go-down-the-rabbit-hole

The XS header obfuscation

• NS (Hidden Bee)

• HS (Rhadamanthys)

Comparing the layout of the
full header we can see a
significant overlap

The lineage of the custom

formats

Malware Format Customized
PE header?

Customized
imports?

Customized
relocations?

Customized
exception
handling?

RH >= 0.4.5 XS

RH < 0.4.5 HS partial

RH < 0.4.5 RS

HiddenBee NS partial

partially customized import table;
same as in HS format

Similar modular design

• The custom packages, having not only analogous
structure, but even the same paths to the

components!

Rhadamanthys Hidden Bee

Similar modular design

• Submodules referenced by paths in a format:
/bin/amd64/[module_name] or

/bin/i386/[module_name], often with .bin

extension

• The components may be injected into other
processes, and loaded with the help of

additional shellcodes

• Overlap is so significant that Virus Total
identified some of the Rhadamanthys shellcodes

as Hidden Bee components

Who is the Rhadamanthys

author?

• Both Hidden Bee and Rhadamanthys seem to be a
work of the same entity

•A team? One skilled person?

•Uses ideas and PoCs of others, but with good

understanding

•Also has his own, original ideas

•Iteratively improve his work

Managing the army of thieves
All the flavors of Rhadamanthys modules

Types of the modules

• Native (XS format, delivered in the package)

• LUA scripts (package)

• The Plugin system: extendibility by custom .NET
modules, following API

• The runners for:

• Custom .NET modules

• PowerShell scripts

• VBS an JScripts

• and more…

The chief in command

• The main module (core.bin) comes with a
hardcoded set of stealers + allows to run

submodules

• Some modules are runners for other plugins and
scripts: taskcore.bin, runtime.dll, loader.dll

• communicates with the submodules over the named
pipe, collects and sends the results

• However: some modules can also speak directly to the
C2

The hardcoded stealers

• The stealers hardcoded in core.bin can be
divided into two groups:

Passive – parsing found
configuration files

Active – interfering with
running processes

The LUA runner

ID Type

W wallets

E e-mails

F FTP

N note-keeping apps

M messengers

V VPN

2 authentication related, password managers, etc.

Example: DashCore wallet
stealer

Each ID represents a type
of a target

The LUA runner

• It can run up to 100 LUA scripts – of which we

found 59 to be implemented
Fetching LUA scripts

The LUA runner and the 59

scripts

Armory AtomicDEX AtomicWallet Authy Desktop AzireVPN BinanceWallet

BinanceWallet BitcoinCore CheckMail Clawsmail Clawsmail CuteFTP

Cyberduck DashCore Defichain-Electrum Dogecoin Electron-Cash Electrum-SV

Electrum EMClient Exodus Frame FtpNavigator FlashFXP

FTPRush GmailNotifierPro Guarda Jaxx Litecoin-Qt Litecoin-Qt

LitecoinCore Monero MyCrypto MyMonero NordVPN Notefly

Notezilla SSH Outlook Pidgin PrivateVPN ProtonVPN

Psi+ PuTTY Qtum-Electrum Qtum RoboForm Safepay

SmartFTP Solar Wallet The Bat TokenPocket Total Commander Tox

TrulyMail WinAuth WalletWasabi WindscribeVPN Zap

all observed LUA stealers

.NET and PowerShell support

• Although the core components are native code,
Rhadamanthys puts a lot of emphasis on .NET and

PowerShell

• There are few different components that allow
to run .NET and PowerShell plugins

.NET and PowerShell support

• Bypasses AMSI and Event tracing via patching
the responsible functions

patch at the
beginning of the
function makes it
exit immediately,
returning a desired
status

Integration of .NET and native

modules

• The whole .NET environment is manually created
within the native Rhadamanthys module

stubmod.bin

Integration of .NET and native

modules
Stubmod may be injected into
different processes. It is used to
run i.e. the KeePass stealer

int __cdecl

to_read_write_to_pipe(

int seed,

DWORD numberOfBytesToWrite,

BYTE *data,

int data_size

)Seed is a number required to recreate the pipe name

The simplest PowerShell runner

The simplest version, replaced in
0.5.0 by much more complex
Runtime.dll

The plugin system: runtime.dll

• Since the release 0.5.0, there is a .NET module
supporting the plugins with their own API

The author announced SDK
support, and provided
documentation on his
channel

The plugin system: runtime.dll

• The new .NET module supports the plugins with
their own API

The plugins are
.NET assemblies
following the API

Runtme.dll: the
manager of .NET
plugins

The native plugin runner:

taskcore.bin

• One more addition of 0.5.0 was introduction of
yet another plugin runner: taskcore.bin

The native plugin runner:

taskcore.bin

• The module is implemented as XS (native Intel
code)

The central function within
taskcore.bin works as
dispatcher of commands
with particular types

The native plugin runner:

taskcore.bin

• Running of the scripts (JScript, WScript,
PowerShell) is implemented via COM interface

(IActiveScript)

The name “Rhadamanthys”
is used as an identifier

Conclusions

• Rhadamanthys is complex, and keeps evolving -
we still didn’t cover it fully

• Understanding the design helps reaching out
parts that interest us the most

•It’s easy to get lost in details: try to start

with some concrete questions to answer

Read more…

https://research.checkpoint
.com/2023/rhadamanthys-
v0-5-0-a-deep-dive-into-
the-stealers-components/

https://research.checkpoint.co
m/2023/from-hidden-bee-to-
rhadamanthys-the-evolution-
of-custom-executable-formats/

https://research.checkpoint
.com/2023/rhadamanthys-
the-everything-bagel-
infostealer/

https://research.checkpoint.com/2023/rhadamanthys-v0-5-0-a-deep-dive-into-the-stealers-components/
https://research.checkpoint.com/2023/rhadamanthys-v0-5-0-a-deep-dive-into-the-stealers-components/
https://research.checkpoint.com/2023/rhadamanthys-v0-5-0-a-deep-dive-into-the-stealers-components/
https://research.checkpoint.com/2023/rhadamanthys-v0-5-0-a-deep-dive-into-the-stealers-components/
https://research.checkpoint.com/2023/from-hidden-bee-to-rhadamanthys-the-evolution-of-custom-executable-formats/
https://research.checkpoint.com/2023/from-hidden-bee-to-rhadamanthys-the-evolution-of-custom-executable-formats/
https://research.checkpoint.com/2023/from-hidden-bee-to-rhadamanthys-the-evolution-of-custom-executable-formats/
https://research.checkpoint.com/2023/from-hidden-bee-to-rhadamanthys-the-evolution-of-custom-executable-formats/
https://research.checkpoint.com/2023/rhadamanthys-the-everything-bagel-infostealer/
https://research.checkpoint.com/2023/rhadamanthys-the-everything-bagel-infostealer/
https://research.checkpoint.com/2023/rhadamanthys-the-everything-bagel-infostealer/
https://research.checkpoint.com/2023/rhadamanthys-the-everything-bagel-infostealer/

	Slide 1: Rhadamanthys & the 40 thieves
	Slide 2: What’s this talk about
	Slide 3: Contents
	Slide 4: Who are we?
	Slide 5: Earlier History & Weirder Features
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14: From broken memdump to direct RE of infostealing
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30: Untangling the complexity The logic behind the Rhadamanthys design
	Slide 31: Untangling the complexity
	Slide 32: Untangling the complexity
	Slide 33: Untangling the complexity
	Slide 34: Untangling the complexity
	Slide 35: The custom formats
	Slide 36: The staged loader
	Slide 37: The staged loader
	Slide 38: The staged loader
	Slide 39: The staged loader
	Slide 40: The staged loader
	Slide 41: The staged loader
	Slide 42: The staged loader
	Slide 43: The staged loader
	Slide 44: The staged loader
	Slide 45: The staged loader
	Slide 46: The staged loader
	Slide 47: The final stage: components
	Slide 48: The XS format
	Slide 49: The XS format
	Slide 50: The XS format
	Slide 51: The XS format
	Slide 52: The XS header obfuscation
	Slide 53: The XS format - sections
	Slide 54: The XS format
	Slide 55: The XS format - relocations
	Slide 56: The XS format - imports
	Slide 57: The XS format- exceptions
	Slide 58: The XS format- exceptions
	Slide 59: The lineage of the custom formats
	Slide 60: The lineage of the custom formats
	Slide 61: The Hidden Bee miner
	Slide 62: The XS header obfuscation
	Slide 63: The lineage of the custom formats
	Slide 64: Similar modular design
	Slide 65: Similar modular design
	Slide 66: Who is the Rhadamanthys author?
	Slide 67: Managing the army of thieves All the flavors of Rhadamanthys modules
	Slide 68: Types of the modules
	Slide 69: The chief in command
	Slide 70: The hardcoded stealers
	Slide 71: The LUA runner
	Slide 72: The LUA runner
	Slide 73: The LUA runner and the 59 scripts
	Slide 74: .NET and PowerShell support
	Slide 75: .NET and PowerShell support
	Slide 76: Integration of .NET and native modules
	Slide 77: Integration of .NET and native modules
	Slide 78: The simplest PowerShell runner
	Slide 79: The plugin system: runtime.dll
	Slide 80: The plugin system: runtime.dll
	Slide 81: The native plugin runner: taskcore.bin
	Slide 82: The native plugin runner: taskcore.bin
	Slide 83: The native plugin runner: taskcore.bin
	Slide 84: Conclusions
	Slide 85: Read more…

