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~# What is the challenge?



  

~# How A.V. Detects Malware?
● Known Hash Values 

– Crypto Hashes (MD5,SHA...)
– Vhash
– SSDEEP
– Imphash
– Authentihash

● Code/Data Patterns 
– Yara
– Snort
– Suricata
– Zeek

● Heuristic Patterns
– File format integrity
– Abnormal entrophy
– Imported libraries/functions

● Behavioral Patterns
– File read/write ops.
– Registery read/write ops.
– Network traffic
– Memory contents
– Function/system calls

● AI Engines
– ML classifiers
– Similarity Detection



  

~# Rule Based Detection



  

~# Code Encoding



  

~# Code Entropy



  

~# RWE Memory



  

~# RWE Is Not Ok!

● Indicates dynamic code
● Useless when ACG enabled
● Very uncommon
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~# Memory Scanners

PE-SIEVE
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~# The Challenge

We need a way of obfuscating binary 
code without creating other 

suspicious indicators.

   



  

~# Prior Work

Binary Obfuscators:
● https://github.com/zeroSteiner/crimson-forge

– Shuffling
– Alterations
– Re-ordering

● https://github.com/weak1337/Alcatraz
– Obfuscation of immediate moves
– Control flow flattening
– ADD mutation
– LEA obfuscation
– Import obfuscation
– Anti disassembly
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~# Prior Work

You can only search sequences not operands.



  

~# The Challenge
We need a way of obfuscating binary 
code without creating other 
suspicious indicators.

GOALS
 No self-modifying code! (no RWE)
 Produce common instruction sequences
 Make it look like compiler generated
 Include most instruction types
 Keep the enthropy low

   



  

~# The Solution



  

~# Code Optimization
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~# How Compiler Optimize Code?



  

~# Code Optimization
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~# Code De-Optimization
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~# Code Optimization



  

~# Expressing Individual Instructions

MOV   PUSH POP LEA            =
CMP   SUB  SBB                -
ADD   ADC                     +
IMUL  MUL                     *
IDIV  DIV                     /
TEST  AND                     &
OR                            |
XOR                           ^
SHL                           <
SHR                           >
NOT                           !
...
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Current x86-64 design 
contains 981 unique
Mnemonics.



  

~# Expressing Individual Instructions

MOV   PUSH POP LEA            =
CMP   SUB  SBB                -
ADD   ADC                     +
IMUL  MUL                     *
IDIV  DIV                     /
TEST  AND                     &
OR                            |
XOR                           ^
SHL                           <
SHR                           >
NOT                           !
...

Current x86-64 design 
contains 981 unique
Mnemonics.



  

~# Instruction Frequency Statistics

Based on ~300GB executable 
section sample pool. ~%95 
transform gadget coverage.

Check below for similar instruction 
frequency studies on x86 instruction set. 



  

~# Transform Gadgets

 Arithmetic Partitioning
 Logical Inverse
 Logical Partitioning
 Offset Mutation
 Register Swap

These transform gadgets are spesifically crafted for producing 
instructions that look like compiler generated sub-optimal code.



  

~# Arithmetic Partitioning

In number theory and combinatorics, a partition of a non-negative 
integer n, also called an integer partition, is a way of writing n as a 
sum of positive integers. Two sums that differ only in the order of 
their summands are considered the same partition.

ADD EAX,0x10  = (X + 16) 
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In number theory and combinatorics, a partition of a non-negative 
integer n, also called an integer partition, is a way of writing n as a 
sum of positive integers. Two sums that differ only in the order of 
their summands are considered the same partition.

ADD EAX,0x10  = (X + 16)

(X+5-4+2+13)  = (X + 16) 



  

~# Arithmetic Partitioning
Targets: 
● All arithmetic instructions with immediate operands.

GUIDE:

1)Randomize immediate value
2)Fix the immediate value with random arihmetic 
instruction

FREQUENCY: ~%38 

MOV EDI,0x0C00008E          MOV EDI,0x0C738EE04
                            SUB EDI,0x738Ed76

ADD AL,0x10                 ADD AL,0xD8
                            SUB AL,0xC8

SUB ESI,0xA0                SUB ESI,0x5062F20C
                            ADD ESI,0x5062F16C

PUSH 0xAABB                 PUSH 0x7F08C11D
                            SUB DWORD PTR [ESP],0x7F081662



  

~# Logical Inverse

In logic, an inverse is a type of conditional sentence which is an 
immediate inference made from another conditional sentence. Given a 
conditional sentence of the form P → Q, the inverse refers to the 
sentence ¬ P → ¬ Q.

XOR R10, 0x10 = (X ^ 16)



  

~# Logical Inverse

In logic, an inverse is a type of conditional sentence which is an 
immediate inference made from another conditional sentence. Given a 
conditional sentence of the form P → Q, the inverse refers to the 
sentence ¬ P → ¬ Q.

XOR R10, 0x10 = (X ^ 16)

{INVERSE}



  

~# Logical Inverse

In logic, an inverse is a type of conditional sentence which is an 
immediate inference made from another conditional sentence. Given a 
conditional sentence of the form P → Q, the inverse refers to the 
sentence ¬ P → ¬ Q.

XOR R10, 0x10 = (X ^ 16)

(X ^ 16) = (X' ^ '16) = (X' ^ -16)



  

~# Logical Inverse
Targets: 
Some logical instructions. (AND/OR/XOR)

GUIDE:

1)Take the inverse of the first operand
2)Take the inverse of the second operand

FREQUENCY: ~%10 - ~%28 (depending on the third NOT op.)

EXAMPLES:

XOR R10,0x49656E69            NOT R10
                              XOR R10,0x0B69A9196

AND AL,0x01                   NOT AL
                              OR AL,0xFE

                              NOT EDX
OR EDX,0x300                  AND EDX,0xFFFFFCFF
                              NOT EDX



  

~# Logical Partitioning

Targets: 
Some logical instructions. (SHR/SHL/ROL/ROR...)

GUIDE:

1)When shifting:
1)Divide the immediate value into 2
2)Shift twice with the new value

2)When Rolling:
1)Add x times the size of the first operand to roll value

FREQUENCY: ~%59

EXAMPLES:

SHR RBX,0x10                     SHR RBX,0x8
                                 SHR RBX,0x8

SHL QWORD PTR [ECX], 0x20        SHL QWORD PTR [ECX], 0x10
                                 SHL QWORD PTR [ECX], 0x10
                                 
ROR EAX,0x0A                     ROL EAX,0x4A

ROL RCX,0x31                     ROL RCX,0xB1 



  

~# Offset Mutation

MOV EAX, CS:[EAX+0x100*8]

● Segment Register
● Base Register
● Displacement Offset
● Scale Vector



  

~# Offset Mutation
Targets: 
All instructions with a memory operand.

GUIDE:

1)Randomize the memory displacement offset
2)Fix the base register with a random arithmetic operation
1)Restore the base register value depending on the target operand

FREQUENCY: ~%100

EXAMPLES:

MOV RAX,[RAX]             ADD RAX,0x705EBC8D
                          MOV RAX,[RAX-0x705EBC8D]

MOV RAX,[RAX+0x10]        SUB RAX,0x20DA86AA
                          MOV RAX,[RAX+0x20DA86BA]

LEA RCX,[RCX]             ADD RCX,0x0D5F14EC
                          LEA RCX,[RCX-0x0D5F14EC]



  

~# Register Swap
Targets: 
All instructions with register operand.

GUIDE:

1)Chose a random register operand
2)Swap register with a same size different register using XCHG
3)Modify the original instruction with new register
4)Swap the register value back using same XCHG instruction

FREQUENCY: ~%22

EXAMPLES:
                          XCHG RAX,RCX
XOR RAX,0x10              XOR RCX,0x10
                          XCHG RAX,RCX

                          XCHG RBX,RSI
ADD RBX,0x31              ADD RSI,0x31
                          XCHG RBX,RSI

                          XCHG RDX,RDI
MOV RDX,RAX               MOV RDI,RAX
                          XCHG RBX,RSI



  

~# Memory Realignment

BRANCH 
INSTRUCTIONS



  

~# Memory Realignment



  

Demo Time!



  




  

~# Detection Rates



  

~# Known Limitations

● Scope
● Self-Modifing Code
● Code With Data
● Overlapping Instructions
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INSTRUCTIONS WITH 0 OPERANDS
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~# Deoptimizer Tool

https://github.com/EgeBalci/deoptimizer

● Fully written in Rust!
● No external dependencies
● Iced_x86 disassembler library

To-Do:

● Add PE support
● Add ELF support
● Add ARM architecture
● Add RISC architecture



  

Thanks!

Questions?
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