

Evasion
by

De-Optimization
Ege BALCI - 2024

~# whoami
● EGE BALCI - Security Researcher
● Threat Intelligence Division Manager @ PRODAFT
● Author of multiple A.V. evasion projects

 @egeblc

 github.com/EgeBalci

 infosec.exchange/@ege

 linkedin.com/in/egebalci

~# whoami
● EGE BALCI - Security Researcher
● Threat Intelligence Division Manager @ PRODAFT
● Author of multiple A.V. evasion projects

 @egeblc

 github.com/EgeBalci

 infosec.exchange/@ege

 linkedin.com/in/egebalci

~# What is the challenge?

~# How A.V. Detects Malware?
● Known Hash Values

– Crypto Hashes (MD5,SHA...)
– Vhash
– SSDEEP
– Imphash
– Authentihash

● Code/Data Patterns
– Yara
– Snort
– Suricata
– Zeek

● Heuristic Patterns
– File format integrity
– Abnormal entrophy
– Imported libraries/functions

● Behavioral Patterns
– File read/write ops.
– Registery read/write ops.
– Network traffic
– Memory contents
– Function/system calls

● AI Engines
– ML classifiers
– Similarity Detection

~# Rule Based Detection

~# Code Encoding

~# Code Entropy

~# RWE Memory

~# RWE Is Not Ok!

● Indicates dynamic code
● Useless when ACG enabled
● Very uncommon

~# RWE Is Not Ok!

● Indicates dynamic code
● Useless when ACG enabled
● Very uncommon

~# RWE Is Not Ok!

● Indicates dynamic code
● Useless when ACG enabled
● Very uncommon

SAFE

MALWARE

~# Memory Scanners

PE-SIEVE

~# Memory Scanners

~# Memory Scanners

~# The Challenge

We need a way of obfuscating binary
code without creating other

suspicious indicators.

~# Prior Work

Binary Obfuscators:
● https://github.com/zeroSteiner/crimson-forge

– Shuffling
– Alterations
– Re-ordering

● https://github.com/weak1337/Alcatraz
– Obfuscation of immediate moves
– Control flow flattening
– ADD mutation
– LEA obfuscation
– Import obfuscation
– Anti disassembly

~# Prior Work

~# Prior Work

~# Prior Work

You can only search sequences not operands.

~# The Challenge
We need a way of obfuscating binary
code without creating other
suspicious indicators.

GOALS
 No self-modifying code! (no RWE)
 Produce common instruction sequences
 Make it look like compiler generated
 Include most instruction types
 Keep the enthropy low

~# The Solution

~# Code Optimization

~# Code Optimization

~# Code Optimization

~# How Compiler Optimize Code?

~# Code Optimization

1
4

(2n+1)−
1
4

1
4

(2n+1)−
1
4

1
4

(2n+1)2−
1
4

~# Code De-Optimization
1
4

(2n+1)−
1
4

1
4

(2n+1)−
1
4

1
4

(2n+1)2−
1
4

1
4

(2n+1)−
1
4

~# Code Optimization

~# Expressing Individual Instructions

MOV PUSH POP LEA =
CMP SUB SBB -
ADD ADC +
IMUL MUL *
IDIV DIV /
TEST AND &
OR |
XOR ^
SHL <
SHR >
NOT !
...

~# Expressing Individual Instructions

MOV PUSH POP LEA =
CMP SUB SBB -
ADD ADC +
IMUL MUL *
IDIV DIV /
TEST AND &
OR |
XOR ^
SHL <
SHR >
NOT !
...

Current x86-64 design
contains 981 unique
Mnemonics.

~# Expressing Individual Instructions

MOV PUSH POP LEA =
CMP SUB SBB -
ADD ADC +
IMUL MUL *
IDIV DIV /
TEST AND &
OR |
XOR ^
SHL <
SHR >
NOT !
...

Current x86-64 design
contains 981 unique
Mnemonics.

~# Instruction Frequency Statistics

Based on ~300GB executable
section sample pool. ~%95
transform gadget coverage.

Check below for similar instruction
frequency studies on x86 instruction set.

~# Transform Gadgets

 Arithmetic Partitioning
 Logical Inverse
 Logical Partitioning
 Offset Mutation
 Register Swap

These transform gadgets are spesifically crafted for producing
instructions that look like compiler generated sub-optimal code.

~# Arithmetic Partitioning

In number theory and combinatorics, a partition of a non-negative
integer n, also called an integer partition, is a way of writing n as a
sum of positive integers. Two sums that differ only in the order of
their summands are considered the same partition.

ADD EAX,0x10 = (X + 16)

~# Arithmetic Partitioning

In number theory and combinatorics, a partition of a non-negative
integer n, also called an integer partition, is a way of writing n as a
sum of positive integers. Two sums that differ only in the order of
their summands are considered the same partition.

ADD EAX,0x10 = (X + 16)

(X+5-4+2+13) = (X + 16)

~# Arithmetic Partitioning
Targets:
● All arithmetic instructions with immediate operands.

GUIDE:

1)Randomize immediate value
2)Fix the immediate value with random arihmetic
instruction

FREQUENCY: ~%38

MOV EDI,0x0C00008E MOV EDI,0x0C738EE04
 SUB EDI,0x738Ed76

ADD AL,0x10 ADD AL,0xD8
 SUB AL,0xC8

SUB ESI,0xA0 SUB ESI,0x5062F20C
 ADD ESI,0x5062F16C

PUSH 0xAABB PUSH 0x7F08C11D
 SUB DWORD PTR [ESP],0x7F081662

~# Logical Inverse

In logic, an inverse is a type of conditional sentence which is an
immediate inference made from another conditional sentence. Given a
conditional sentence of the form P → Q, the inverse refers to the
sentence ¬ P → ¬ Q.

XOR R10, 0x10 = (X ^ 16)

~# Logical Inverse

In logic, an inverse is a type of conditional sentence which is an
immediate inference made from another conditional sentence. Given a
conditional sentence of the form P → Q, the inverse refers to the
sentence ¬ P → ¬ Q.

XOR R10, 0x10 = (X ^ 16)

{INVERSE}

~# Logical Inverse

In logic, an inverse is a type of conditional sentence which is an
immediate inference made from another conditional sentence. Given a
conditional sentence of the form P → Q, the inverse refers to the
sentence ¬ P → ¬ Q.

XOR R10, 0x10 = (X ^ 16)

(X ^ 16) = (X' ^ '16) = (X' ^ -16)

~# Logical Inverse
Targets:
Some logical instructions. (AND/OR/XOR)

GUIDE:

1)Take the inverse of the first operand
2)Take the inverse of the second operand

FREQUENCY: ~%10 - ~%28 (depending on the third NOT op.)

EXAMPLES:

XOR R10,0x49656E69 NOT R10
 XOR R10,0x0B69A9196

AND AL,0x01 NOT AL
 OR AL,0xFE

 NOT EDX
OR EDX,0x300 AND EDX,0xFFFFFCFF
 NOT EDX

~# Logical Partitioning

Targets:
Some logical instructions. (SHR/SHL/ROL/ROR...)

GUIDE:

1)When shifting:
1)Divide the immediate value into 2
2)Shift twice with the new value

2)When Rolling:
1)Add x times the size of the first operand to roll value

FREQUENCY: ~%59

EXAMPLES:

SHR RBX,0x10 SHR RBX,0x8
 SHR RBX,0x8

SHL QWORD PTR [ECX], 0x20 SHL QWORD PTR [ECX], 0x10
 SHL QWORD PTR [ECX], 0x10

ROR EAX,0x0A ROL EAX,0x4A

ROL RCX,0x31 ROL RCX,0xB1

~# Offset Mutation

MOV EAX, CS:[EAX+0x100*8]

● Segment Register
● Base Register
● Displacement Offset
● Scale Vector

~# Offset Mutation
Targets:
All instructions with a memory operand.

GUIDE:

1)Randomize the memory displacement offset
2)Fix the base register with a random arithmetic operation
1)Restore the base register value depending on the target operand

FREQUENCY: ~%100

EXAMPLES:

MOV RAX,[RAX] ADD RAX,0x705EBC8D
 MOV RAX,[RAX-0x705EBC8D]

MOV RAX,[RAX+0x10] SUB RAX,0x20DA86AA
 MOV RAX,[RAX+0x20DA86BA]

LEA RCX,[RCX] ADD RCX,0x0D5F14EC
 LEA RCX,[RCX-0x0D5F14EC]

~# Register Swap
Targets:
All instructions with register operand.

GUIDE:

1)Chose a random register operand
2)Swap register with a same size different register using XCHG
3)Modify the original instruction with new register
4)Swap the register value back using same XCHG instruction

FREQUENCY: ~%22

EXAMPLES:
 XCHG RAX,RCX
XOR RAX,0x10 XOR RCX,0x10
 XCHG RAX,RCX

 XCHG RBX,RSI
ADD RBX,0x31 ADD RSI,0x31
 XCHG RBX,RSI

 XCHG RDX,RDI
MOV RDX,RAX MOV RDI,RAX
 XCHG RBX,RSI

~# Memory Realignment

BRANCH
INSTRUCTIONS

~# Memory Realignment

Demo Time!

~# Detection Rates

~# Known Limitations

● Scope
● Self-Modifing Code
● Code With Data
● Overlapping Instructions

~# Known Limitations

● Scope
● Self-Modifying Code
● Code With Data
● Overlapping Instructions

INSTRUCTIONS WITH 0 OPERANDS

~# Known Limitations

● Scope
● Self-modifing Code
● Code With Data
● Overlapping Instructions

~# Known Limitations

● Scope
● Self-modifing Code
● Code With Data
● Overlapping Instructions

~# Known Limitations

● Scope
● Self-modifing Code
● Code With Data
● Overlapping Instructions

~# Deoptimizer Tool

https://github.com/EgeBalci/deoptimizer

● Fully written in Rust!
● No external dependencies
● Iced_x86 disassembler library

To-Do:

● Add PE support
● Add ELF support
● Add ARM architecture
● Add RISC architecture

Thanks!

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57

